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Abstract

The development of biaxial segmental orientation and stress in a flexible-chain polymer fluid subjected to steady biaxial extensional flow
is analyzed. Closed-formula model based on the Padé approximation of the inverse Langevin function in the non-Gaussian distribution of the
chain end-to-end vectors is considered. The approach is free from the limitations related to finite chain extensibility and slow convergence of

the series expansion formulations at higher chain deformations.

Segmental orientation is characterized by the average orientation tensor, related axial orientation factors and global orientation anisotropy.
Orientational behavior and corresponding stresses in the biaxial elongational potential flow are discussed in a wide range of elongation rates.
Orientation characteristics calculated for the biaxial flow deformation are much higher than those predicted for the affine biaxial stretch
deformation in polymer solids. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An increasing interest in the formation of high-
performance films from flexible-chain polymers led
several authors to experimental [1-8] and theoretical
[1,6,9-11] investigations on the characterization and
development of biaxial orientation. In theoretical model-
ing of formation of high molecular orientation, applic-
ability of Gaussian chain statistics is limited by finite
extensibility of the polymer chains, in particular at
higher molecular deformations. On the other hand,
series expansion theories involving non-Gaussian chain
statistics lead at higher molecular deformations to
weekly converging formulations [10,11].

In a recent paper [11] we have applied a Pade approxima-
tion of the inverse Langevin function in so-called inverse
Langevin distribution of chain conformations. This led us to
a closed-formula theory for the entire range of chain exten-
sions. In Ref. [11], we discuss molecular orientation and
stresses in systems subjected to affine biaxial deformation
in solid polymers. Affine deformation of polymer chains is
introduced by a macroscopic deformation of polymer
network or by a plastic deformation of uncrosslinked solids.

* Corresponding author. Tel.: +48-22-827-8182; fax: +48-22-826-9815.
E-mail address: ljarecki@ippt.gov.pl (L. Jarecki).

An alternative way of introducing molecular deforma-
tion and orientation is an orienting potential flow
applied to systems with high molecular mobility, like
polymer melts or concentrated solutions. Unlike in
solid-state, molecular deformation and orientation in a
viscous fluid are controlled by deformation rate (or stress)
implied by the flow, rather than by deformation. This picture
seems to be confirmed by the orientation behavior in Nylon
6 fibers, either cold-drawn in a plastic state where the
orientation is controlled by the draw ratio, or melt-spun
where the orientation is controlled by the spinning speed
(or spinning stress) [12,13].

In more complex, viscoelastic materials, effects of defor-
mation and deformation rate are superimposed one on
another. Melt spinning of highly viscoelastic polyethylene
shows both, deformation (spin—draw ratio) as well as defor-
mation rate (spinning speed) effects.

In this paper, we analyze the development of molecular
orientation and stress in a viscous fluid subjected to steady,
biaxial extensional flow. We use the Pade approximation of
the inverse Langevin function [14] in the non-Gaussian
distribution of the chain end-to-end vectors. The results
should be relevant to such fluid state industrial processes
as melt spinning of fibers, melt blowing or solution casting
of films, etc. Transient viscoelastic effects will be discussed
in separate papers.

0032-3861/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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2. Molecular orientation and stress in systems of flexible
polymer chains

Like in the previous paper, we consider a non-Gaussian,
freely jointed polymer chains, whose unperturbed end-to-
end vectors’ distribution is described by the inverse Lange-
vin statistics [15]

h/Na
W, (h) = const. exp[ -N 3*(x)dx] (1)
0

where a is a fixed-length statistical Kuhn segment, N, the
number of such segments in a chain.
Series expansion of the inverse Langevin function
assumes the form
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Function #*(x) can be effectively described by its Pade
approximation in the following form [14]
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applicable in the entire range of variable x.
The expanded form of the unperturbed distribution of the
end-to-end vector h reads
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and with the Padé approximation

n T K
Wy(h) = const.[l - (m) ] exp(—m) (@)

The distributions (4) and (5) are functions of the chain
extension /#/Na and N.

Equilibrium orientation distribution of the chain seg-
ments around the end-to-end vector h is cylindrically
symmetric, and is characterized by the normalized distribu-
tion of the cosine of angle o between a segment and the
vector h [16]
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%" (hINa) L h
47 sh[.Z" (WINQ)] eXp['f (W)COS a] ©

The distribution wy, can be considered as a conditional prob-
ability of finding statistical segment oriented at the angle «
(with respect to vector h) at fixed chain extension h/Na.
Orientation of segments in a single polymer chain with
end-to-end vector h is represented by the following orienta-
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tion tensor [16], controlled only by the chain extension #/Na
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With the Pade approximation the orientation tensor reduces
to

2 h®h
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The number of chain configurations available at fixed vector
h is proportional to the unperturbed, equilibrium distribu-
tion function Wy(h). The entropy of the chain composed of
N statistical segments is given by

h/Na
S(h) = k In Wy(h) = const. — Nk | " (x)dx )
0

With the series expansion (2), the chain entropy reads
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and with the Pade formula

S(h) = const. — Nk[%(Nia)z—ln(l - (Nia)z)] (11)

The ‘local’ molecular stress tensor corresponding to the
elastic force between the chain ends reads [17,18]

1 kT ( h + h\Yh®h
= f®h=""(2 e (L 12
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where v, denotes volume per single segment.
Using the expansion formula (2) one obtains
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and with the Padé approximation we have

h 2
|3+
_ kT( h ) Na h®h
P= 1\ Na 1_( I )2 2
Na
In both expressions, the molecular stress tensor p depends,
except for temperature, only on the chain extension h/Na.

Global orientation distribution of the segments in the
system of chains, w,(6, ¢), is obtained from the integral

(14)

(6, ¢) = jwso(‘Z—:)W<h)d3h (15)

where a-h/(ah) = cos a. 6, ¢ denote polar angles of the
segment vector a in an external coordinate system. W(h)
is the actual distribution of end-to-end vectors in the
deformed system.

Time-dependent distribution function of end-to-end
vectors, W(h, 7), in the system subjected to the flow defor-
mation can be found from the following continuity equation
[11,18]

. F
w +div[Wh0—D<VW+WV—el)]:O (16)
at kT

where F, is entropy-controlled elastic free energy between
the chain ends, D the diffusion coefficient of the chain end
point. The chain can be represented here by a Brownian
dumbbell with a non-Hookean elastic potential, subjected
to the flow.

The convective deformation rate of a chain end-to-end
vector in the flow, ho, is characterized by the macroscopic
velocity gradient tensor VV, equal in the case of extensional
flow to the deformation rate tensor Q

h, = VV-h (17)

VWW=Q= %(VVJrVVT) (18)

We consider diagonal velocity gradient tensor, constant in
time

q1 0 0
VWw=Q=]0 ¢ 0 (19)
0 0 g5

In the previous paper [11], we have analyzed an asymptotic
solution of Eq. (16) in the limit of infinitely small molecular
mobility, D. The limit corresponds to the solid-state
behavior, and molecular orientation and stress are controlled
by global, macroscopic deformation of the system. In this
paper, we consider another special solution, corresponding
to a viscous fluid.

3. Equilibrium distribution in steady potential flow

Another asymptotic case is obtained as an ‘equilibrium’
orientation distribution in the potential flow. Using the idea
of Kramers [19,20] applied in our earlier papers [18,21] we
consider the effect of steady potential flow as an additional
scalar thermodynamic potential. The flow potential H(h)
satisfies the following equations

1. 1
H(h) = ~hhy = Sh-Qh (20)
VH(h) = hy = Qh (21)
VVTH() = Q = const. (22)

and can be combined with the elastic free energy of the
chain, Fg(h). For a steady-state potential flow Eq. (16)
reduces to a simple first-order differential equation

Foth)  H(h) ] —0

kT D 23)

VW + WV[

yielding equilibrium distribution in the Boltzmann form

Fa) | @]

(24)

W(h) = const. exp[ T T D

Introducing the molecular friction coefficient ¢ and the
relaxation time 7, inversely proportional to the diffusion
coefficient D

_ 6kTT kT

= =" 25
N2 "D (25)
and the elastic free energy

h/Na
Fq(h) = —kT In Wy(h) = NkT Z*(x)dx (26)
0

we obtain the following equilibrium orientation distribution
of the end-to-end vectors

h/Na h Qh

W(h, Q) = const. exp[ —-N L (x)dx + 3772] 27
0 Na

In the Gaussian approximation, the normalized distribution
of vector h in the flow reduces to the form

3n
Wh,Q) = ( ) [(1 = 27g,)(1 — 27g;)
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(28)
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where the tensor I'y describes an equilibrium molecular
deformation of the end-to-end vectors of Gaussian chains
in the flow

_ 1 -

_ 0 0

1 —27q

1
= 0 — 0
Ty 1—27q, (29)
1
0 0 D —
| 1 —21q; |

The molecular deformation tensor 'y substantially differs
from the macroscopic flow deformation tensor exp(tr Qr).
Distribution function (28) becomes undefined at the
extension rates 7q; = 1/2 (i=1, 2, or 3) and principal
components of I'y also reflect the indeterminacy of chain
deformation under such flow.

In the case of Gaussian chains, the equilibrium distribu-
tion of h vectors in the flow corresponds to an affine distri-
bution controlled by the deformation tensor I'y. Such a
behavior is a direct consequence of linearity of the flow
and Gaussian elastic potentials. Non-linear elasticity of
non-Gaussian chain deviates the distribution from an
affine-type, and tensor I'y does no longer characterize
chain deformation, in particular at higher values of 7¢,.

With the Pade approximation, we receive the distribution
function of chain end-to-end vectors in the following closed
form

A\ T 1
W(h,Q) = const.[l - (Na) ] exp{ T NG

X [(1 — 67g)ht + (1 — 6792)h5 + (1 — 6Tq3)h§]}'

(30)

without any indeterminacy in the entire range of the reduced
extension rates 7g;, and no affine-type distribution of the
chain end-to-end vectors can be introduced.

Integration of the intra-chain orientation distribution of
the statistical Kuhn segments wy(a) with the distribution
(27) yields global orientation distribution of the chain
segments. The approximate Gaussian form, controlled by
tensor I'y and obtained from the combination of the linear-
ized form of Eq. (6) with Eq. (28), reads

1 1 (IYy 3 alha
= _ J] — — L - 1
ws(6.¢) 417{ 2“( N )}eXp(z Na? ) (3D

where the Gaussian angular distribution of Kuhn segments
is controlled by

-I 1 1 1
a };a = —| | ————cos’ ¢+ — sin? 1) sin” 6
Na N 1 —27q 1—27q,
+ ———cos” § 32
I —2ngy ] (32)

and scaled by the inverse number of the segments in a chain,
N~'. The approximation can be used for small values of the
reduced flow rates 7¢g;. In the absence of flow (H = ¢q; =
q» = q3 =0), the orientation distribution reduces to
uniform.

4. Average behavior in flowing systems

Average values of the entropy, orientation and molecular
stress tensors in the system subjected to the flow are
obtained by integration of the functions with actual distribu-
tion of the end-to-end vectors, W(h)

(8) = JS(h)W(h)d3h (33)
(A) = JA(h)W(h)d3h (34)
® = Jp(h)wancfh 35)

For the equilibrium Gaussian distribution of the chains,
applicable to relatively small molecular deformations
(1g; < 1/2), one obtains

1 1 1 1
) = const. — —[ + + ]

kN 2NL1—-2q;7 1—2q7 1-—2¢37
1 Iy
= t.— —tr— 36
cons ST (36)
1 I'y
A)=—-— 37
=5 @)
Pvo I'y
—_H 8
kT N (38)

The effects of flow deformation on the average entropy per
single segment, average molecular orientation and stress
tensors scale with the inverse number of segments in a
chain, N~'. The flow molecular deformation, represented
by tensor Iy, is controlled by the macroscopic deformation
rates and viscous interactions between the chain and the
flowing medium. The linear relations (37) and (38) lead to
the well-known linear stress-optical law in the form

(A= ) (39)

At higher chain deformations, non-linearity of the stress-
orientation relationship related to the non-Gaussian chain
statistics should be considered.

Molecular anisotropy in the system can be characterized
by the deviator of the average orientation tensor

fi 00
D = dev(A) = (A) — %tr<A>I=§ 0 f 0 (40)
0 0 f
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Principal components of the deviator, f;, characterize axial
orientation of the statistical segments along the deformation
axes. The axial orientation factors read

fi=AAn - %(<A22> + (A33)) 41
fo= () = 5 (A1) + (Ass)

1
fi={(43) — §(<A11> + (An))
where the sum
hth+fi=0 (42)
The norm of the deviatoric tensor D
2 12
IDl| = (@D = Z(7 + 5+ 53) 43)

is a scalar measure of the global anisotropy in the flowing
system.
Similarly, norm of the average deviatoric stress tensor

1 172
P = [tr<<p>2) - 5(tr<p>>2]
= I:i(<pll>2 + () + ()’

12
— P1uXp2) — PuXps) — <P22><P33>)] (44)

characterizes intensity of deviatoric stress in the flowing
system.

5. Discussion

We consider isochoric biaxial elongational flow, coaxial
with the Ox;, Ox; axes of an external coordinate system,
where the corresponding velocity gradients are

q 70 qz 7 0; g = —(q; +q3) (45

We refer the flow to uniaxial elongational flow, coaxial with
the Ox;-axis

and/or

1

N=0@= 5% (46)

For the uniaxial case, the molecular deformation tensor of
the Gaussian chains reads

_ 1 . -
1+ Tqs
1
I'y= 0 T 0 47)
1
0 0
B 1 = 27q;

and the average Gaussian entropy (Eq. (36)) reduces to

S 3 1-
Q = const. — — s (48)
kN 2N 1 — 7q3(1 + 271q3)

with the known singularity at 7g; = 1/2 which results from
infinite extensibility of Gaussian chains. Similar limitation
concerns also biaxial deformation of Gaussian chains. The
entropy, segmental orientation factor, and stress depends on
N and on the reduced elongation rate 7g; controlling the
chain deformation.

In the biaxial flow, the segmental orientation factors are
expressed, in the case of Gaussian chains, in terms of the
molecular deformation tensor components 1/(1 — 27g;)

1 1 1 1 1
= | — = +
h SN[I—Zqu 2(1—27% 1+2r<q1+q3>)]
49)

1 1 1 1 1
=l )
SN|L1—2mg; 2\1—-2mq 1 +21(q, + q3)
(50)
For the uniaxial flow, the orientation factors reduce to

_ 3 43
SN 1 —1g5(1 + 27g3)°

2 hi=h=-3h 6D
In the range of higher flow deformations, 7q; = 1/2, the
Gaussian model is intractable and leads to undefined stress
and orientation characteristics.

Padé approximation of the inverse Langevin function
provides a closed-formula approach tractable in the entire
range of the reduced flow intensities, 7g;. We use the
approach to discuss segmental orientation in the biaxial
flow deformation.

Axial orientation factors f; and f; plotted vs. 7¢3, at fixed
7q; values (indicated), are shown in Figs. 1 and 2 for the

0.8

Orientation factorf,

0.4 . . . . .
0.0 0.5 1.0 1.5

Reduced elongation rate, q,

Fig. 1. Axial orientation factor f; vs. reduced transversal elongation rate 7gs,
at fixed 7q, values (indicated), computed for biaxial elongational flow of a
system of non-Gaussian chains and Pad¢ approximation of the inverse
Langevin function. Number of statistical segments in a chain N = 100.
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Orientation factor,f,

-0.4 T T T T v
0.0 0.5 1.0 15

Reduced elongation rate, <q,

Fig. 2. Axial orientation factor f; vs. reduced elongation rate 7gs, at fixed
7q; values (indicated), for biaxial elongational flow of a system of non-
Gaussian chains. Computations as for Fig. 1.

system of non-Gaussian chains subjected to the biaxial
elongational flow. Computations are performed using the
flow modified inverse Langevin distribution of the chain
end-to-end vectors in the Padé approximation (Eq. (3)).
The number of statistical segments in each chain is N =
100.

Computed axial orientation factors do not show any
singularity or discontinuity at 7g; = 1/2, appearing in the
case of Gaussian chain statistics. The orientation factors
increase monotonically in the entire range of the stretching
rates, 7q; or 7qs. Upper limit for each of the orientation
characteristics is unity indicating ideal axial orientation in
the limit of infinite coaxial elongation rate. In the case of
affine biaxial stretch, accessible values of the axial orienta-
tion factors are considerably lower [11], and do not exceed
0.27 [10,11,18].

As expected, transversal elongational flow 7g; reduces f,
and vice versa, 7¢q, reduces f; (Figs. 1 and 2). The transversal
flow becomes effective in reducing the axial orientation
factor when its intensity approaches or exceeds the one of
the coaxial flow, within a range of about £0.25. Below that
range, the segmental orientation is not affected by the trans-
versal flow, and f] vs. 7¢; plots in Fig. 1 show a plateau. The
plateau is the wider, the higher is the coaxial elongation rate
7q;. In the range of strong transversal flow, reducing axial
orientation factor, the plots show steep decrease with
increasing low intensity. Next, the plot tends to an asymp-
tote, which is mildly converging to a —0.5 value limit, i.e. to
an ideal transverse orientation in the limit of infinite trans-
versal elongation rate. The asymptote is common for all
values of the coaxial elongation rates. The behavior
concerns flow deformations with the reduced elongation
rates 7¢;, coaxial and transversal, exceeding a value of 0.5.
Then, the orientation factors assume the values of about
0.5 indicating high-level axial orientation, or of about
—0.25 predicting high transversal orientation of the chain
segments.

Within the range of the reduced extension rates below
0.5, the axial orientation factors do not exceed the values
of 0.03 for the coaxial and —0.015 for the transversal orien-
tation, indicating much weaker effects in this flow range.
Transition to the regime of higher orientations takes place at
the reduced stretching rates approaching 0.5, where the
Gaussian model shows its singularity.

Discussion of the effective flow orientation in the regime
of 7q; above 0.5 requires non-Gaussian chain statistics
where the series expansion approach to the chain statistics
is practically intractable. In this paper, an approach with the
closed-formula Pade approximation of the inverse Langevin
function in the non-Gaussian chain statistics is illustrated.

For comparison, the affine biaxial elongation of polymer
solids does not show in the range of lower transversal exten-
sions such a wide plateau of the axial orientation factor vs.
the transversal deformation plots like in the case of flow
deformation. The reduction of the axial orientation of
chain segments by the transversal extension takes place in
a much wider transversal deformation range, and the
decrease of the orientation factor is much milder in the
affine case [10,11]. Also any single asymptote, predicted
for the case of biaxial extensional flow, is seen at high
transverse extensions.

The reduction of the axial orientation factor f; by the
transversal flow is accompanied by an increase of the
axial orientation factor f; in the transverse direction, as it
is shown in Fig. 2. For 7q; < 0.5, an effective orientation in
the transverse direction is produced by the transversal flow
7q3 exceeding 0.5. For 7g; > 0.5, a steep increase in the
transversal orientation is predicted at the transversal flow
intensities 7q; approaching 7g; value. The transversal flow
with distinctly lower intensity is ineffective for producing
transversal orientation, the axial orientation factor in the
transverse direction is negative in this range, and remains
nearly constant vs. 7gs, at fixed 7¢q;. Above the range of the
steep increase, the f3 vs. 7gs plots approach the common
high orientation asymptote tending to unity with increasing
the flow rate to infinity. The picture is complementary to
that shown in Fig. 1.

The measure of global orientation anisotropy [D]|,
combining all axial orientation factors, is shown in Fig. 3
vs. 7qs3, at fixed 7g; values. Negligible orientation aniso-
tropy is predicted in the range of the elongation rates 7q;
and 7q; below 0.5. Higher anisotropy of the segmental
orientation requires at least one flow, 7g; or 1g;, exceeding
0.5. In the range of high flow intensities, 7¢; > 0.5, effec-
tive for segmental orientation, the transversal flow 7g;
practically does not influence the overall anisotropy if its
intensity does not exceed the value of 7q;. When the flow
intensities coincide, the orientation anisotropy increase
monotonically with increasing 7g3 above 7q;, and
approaches an asymptotic plot, approximately common for
all 7g; values. Highest values of the orientation character-
istic reach a value of about 0.6 (Fig. 3).

The predicted values of the axial orientation and global
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0.8

Orientation anisotropy, [|D|]|

1 q,=0,025

0.0 0.5 1.0 1.5

Reduced elongation rate, <q,

Fig. 3. Global orientation anisotropy |[D|| vs. transversal elongation rate 7gs,
at fixed 7q, values (indicated), for biaxial elongational flow of non-
Gaussian chains. Computations as for Fig. 1.

anisotropy characteristics, fi, f>, and ||D , are considerably
higher for the flow deformation than those computed for the
affine biaxial deformation. The values of the anisotropy
characteristic in the case of affine deformation do not exceed
a value of 0.15 [11].

Fig. 4 shows a deviation of the axial orientation factor f;
computed using the non-Gaussian model with the Pade
approximation from the Gaussian model (Eq. (50)). The
comparison is possible in the range of the reduced elonga-
tion rates 7q; < 0.5 and 7g3 < 0.5 because of the singular-
ity associated with the Gaussian approach. Significant
deviation of the orientation factor from the linear Gaussian
plot is evident, even at small values of the orientation factor
of the order of 0.01. In the case of affine deformation, the
deviation from the Gaussian plot takes place at a higher

0.04

0.03 4

0.02 4

0.014

Orientation factor,f,

0.00 +

0.0 0.1 0.2 I 0.3
Deformation rate function, g(zq,,1q,)

Fig. 4. Axial orientation factor f; vs. a deformation rate function
(g1, 73) = (UN){1/(1 — 27g3) — [1/(1 = 27g,) + 1/(1 + 27(q, + @)V
2} at fixed 7q; values (indicated) for biaxial elongational flow of Gaussian
(dotted line) and non-Gaussian (solid lines) chains. Computations as for
Fig. 1, and the elongation rates limited to the range 7q; < 1/2 and g3 <
172.

value of the orientation factor of about 0.1 [11]. This
provides another indication that the Gaussian model is
inappropriate, particularly for the case of elongational
flow deformation, biaxial or uniaxial, although it can be
used for not high affine deformations.

The average normal stress differences calculated for the
Gaussian system for the case of the biaxial elongational flow
read

kT 1 1
@ = - ) (52
Nvg\ 1 — 27g; 1 —271q,
kT 1 1
@ = - ) o
Nvg\ 1 — 27g3 1+ 21(g; + q3)
and for the uniaxial elongational flow
3kT
(apy = (Ap*hy = T 7 (54)

Nvg 1 — 1g3(1 + 27gq3)

The average normal stress differences (Ap®") and (Ap®?),

computed for the system of non-Gaussian chain statistics
with the Padé approximation are plotted in Figs. 5 and 6,
respectively, vs. transversal elongation rate 7g; at fixed
values of 7q,. Both stress differences show a plateau in
the range of the transversal flow intensity 7g; below the
value of 7g;. When 7¢g; approaches the value of 7gq;, the
stress differences start to increase steeply with increasing
transversal elongation rate. The steep increase is followed
by a moderate increase at higher 7g;, asymptotic and
common for all 7g; values. The steep increase takes place
in a rather narrow range of the transversal elongation rates.

The maps of the global orientation and stress anisotropy
defined by Eqgs. (43) and (44) are shown in Figs. 7 and 8,
respectively, vs. 7g; and 7g3. Dashed lines indicate points of
the uniaxial elongational flow along x;x, or x;-axis of the
external coordinates system. The maps are symmetrical with
respect to the 7q; = 7¢3 line of equally intense biaxial flow

T T T T
0.0 05 1.0 1.5

Reduced elongation rate, <q,

Reduced stress difference, <Ap(3‘1)>v0/kT

Fig. 5. Reduced, average normal stress difference (Ap(3 D WolkT vs. reduced
elongation rate 7¢q; at fixed 7¢g; values (indicated), for biaxial elongational
flow of non-Gaussian chains. Computations as for Fig. 1.
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T T T T T
0.0 0.5 1.0 1.5

Reduced elongation rate, zq,

Reduced stress difference, <Ap(3’2’>v0/kT

Fig. 6. Reduced difference of normal stresses (Ap(3'2))v0/kT vs. reduced
elongation rate 7g;, at fixed 7¢q; (indicated), for biaxial, isochoric flow
deformation of non-Gaussian chains computed as in Fig. 5.

deformation. The maps are similar to the maps obtained for
the affine deformation in Ref [11], but with substantially
higher values of the orientation characteristics in the case
of the flow deformation.

The orientation and stress anisotropy remains practically
unaffected by the transversal flow deformation within a
wide range of the transversal flow rates below the values
of the coaxial flow. This feature is illustrated by nearly
vertical lines in the maps within the elongation rate range,
with the range being wider, the higher is the value of 7¢g;.
Further increase of 7¢;, at fixed 7¢,, leads to a transition to
the range of horizontal lines in the maps indicating steep and
monotonic increase in both, the orientation and stress aniso-
tropy. The maps also indicate the steepest increase in the
stress and orientation anisotropy for the uniaxial elonga-

15

D]

Reduced elongation rateq,

T
05 1.0 15

T
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Fig. 7. The map of global orientation anisotropy |[D|| in the space of reduced
elongation rates 7q,, 7q3 for biaxial elongational flow. Dashed straight lines
indicate points of uniaxial flow deformation along, respectively, x;, x,, and
X3 axes.
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Fig. 8. The map of global dimensionless stress anisotropy |[P||vo/kT in the
space of reduced elongation rates 7q;, 7¢3 in biaxial elongational flow line
as in Fig. 7.

tional flows indicated by the dashed straight line intersecting
at rg; = 7q3 = 0.

6. Conclusions

The Padé approximation of the inverse Langevin
function in the non-Gaussian chain statistics leads to a
closed-formula theory of segmental orientation and
stress in the entire range of chain deformations in the
biaxial elongational flow applied to a polymer fluid.
Steady-state segmental orientation in the polymer fluid
subjected to the flow is controlled by the reduced deforma-
tion rates 7g;.

The Gaussian approach and the series expansion
approach to the non-Gaussian chain statistics are ineffective
in discussing segmental orientation in the biaxial, or uniax-
ial extensional flows, and lead to singularities, indefinite or
poor behavior in the range of deformation rates effective for
the orientation.

Steady-state distribution of the chains’ end-to-end
vectors in the system, as well as average segmental
orientation and stress characteristics, are controlled by
an equilibrium Boltzmann-type potential which involves
the chain elastic free energy and a flow potential
controlled by the reduced elongation rates 7g;. In the
limit of infinitely long relaxation time, or zero diffusion
rate, the chain distribution follows the affine deforma-
tion scheme, but the flow deformation theory does not
show any continuous transition to the affine deformation
model presented in previous paper [11]. We conclude
that the segmental orientation, orientation anisotropy,
and stress in a viscous, potential flow is controlled by
the reduced deformation rates 7¢;, while in the case of
an affine deformation of a polymer solid by the applied
macroscopic deformation.

Segmental orientation and stress behavior in the biaxial
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elongational flow resembles the one discussed for the affine
deformation in solids, except for much stronger segmental
orientations produced in the flow deformation. Elongational
flow is much more effective for producing high segmental
orientation, axial and global, than the affine elongation
applied to solids. The axial orientation factors approach
unity in the limit of infinite strain rates 7q;, while for the
affine case the upper limit of about 0.27 was found at the
highest achievable extensions.

Global orientation and stress anisotropy remains
unaffected by the transversal flow if its intensity does not
exceed the intensity of the flow in the other direction. One
concludes that the orientation and stress anisotropy in
biaxial elongational flow is controlled practically by the
dominating flow intensity. Transition of the control between
the flow directions occur when the flow intensities coincide
within a range of about +0.25. The transition range is much
narrower than in the case of affine deformation in polymer
solids.
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